Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 7.127
Filtrar
Más filtros











Intervalo de año de publicación
1.
Nat Commun ; 15(1): 3884, 2024 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-38719909

RESUMEN

Only a minority of cancer patients benefit from immune checkpoint blockade therapy. Sophisticated cross-talk among different immune checkpoint pathways as well as interaction pattern of immune checkpoint molecules carried on circulating small extracellular vesicles (sEV) might contribute to the low response rate. Here we demonstrate that PD-1 and CD80 carried on immunocyte-derived sEVs (I-sEV) induce an adaptive redistribution of PD-L1 in tumour cells. The resulting decreased cell membrane PD-L1 expression and increased sEV PD-L1 secretion into the circulation contribute to systemic immunosuppression. PD-1/CD80+ I-sEVs also induce downregulation of adhesion- and antigen presentation-related molecules on tumour cells and impaired immune cell infiltration, thereby converting tumours to an immunologically cold phenotype. Moreover, synchronous analysis of multiple checkpoint molecules, including PD-1, CD80 and PD-L1, on circulating sEVs distinguishes clinical responders from those patients who poorly respond to anti-PD-1 treatment. Altogether, our study shows that sEVs carry multiple inhibitory immune checkpoints proteins, which form a potentially targetable adaptive loop to suppress antitumour immunity.


Asunto(s)
Antígeno B7-1 , Antígeno B7-H1 , Vesículas Extracelulares , Receptor de Muerte Celular Programada 1 , Vesículas Extracelulares/metabolismo , Vesículas Extracelulares/inmunología , Receptor de Muerte Celular Programada 1/metabolismo , Humanos , Antígeno B7-1/metabolismo , Antígeno B7-H1/metabolismo , Antígeno B7-H1/inmunología , Animales , Ratones , Línea Celular Tumoral , Femenino , Neoplasias/inmunología , Neoplasias/patología , Inhibidores de Puntos de Control Inmunológico/uso terapéutico , Inhibidores de Puntos de Control Inmunológico/farmacología , Tolerancia Inmunológica , Ratones Endogámicos C57BL , Masculino , Microambiente Tumoral/inmunología
2.
Int J Biol Sci ; 20(7): 2727-2747, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38725857

RESUMEN

Phenotypic switching (from contractile to synthetic) of vascular smooth muscle cells (VSMCs) is essential in the progression of atherosclerosis. The damaged endothelium in the atherosclerotic artery exposes VSMCs to increased interstitial fluid shear stress (IFSS). However, the precise mechanisms by which increased IFSS influences VSMCs phenotypic switching are unrevealed. Here, we employed advanced numerical simulations to calculate IFSS values accurately based on parameters acquired from patient samples. We then carefully investigated the phenotypic switching and extracellular vesicles (EVs) secretion of VSMCs under various IFSS conditions. By employing a comprehensive set of approaches, we found that VSMCs exhibited synthetic phenotype upon atherosclerotic IFSS. This synthetic phenotype is the upstream regulator for the enhanced secretion of pro-calcified EVs. Mechanistically, as a mechanotransducer, the epidermal growth factor receptor (EGFR) initiates the flow-based mechanical cues to MAPK signaling pathway, facilitating the nuclear accumulation of the transcription factor krüppel-like factor 5 (KLF5). Furthermore, pharmacological inhibiting either EGFR or MAPK signaling pathway blocks the nuclear accumulation of KLF5 and finally results in the maintenance of contractile VSMCs even under increased IFSS stimulation. Collectively, targeting this signaling pathway holds potential as a novel therapeutic strategy to inhibit VSMCs phenotypic switching and mitigate the progression of atherosclerosis.


Asunto(s)
Receptores ErbB , Vesículas Extracelulares , Factores de Transcripción de Tipo Kruppel , Músculo Liso Vascular , Miocitos del Músculo Liso , Estrés Mecánico , Vesículas Extracelulares/metabolismo , Receptores ErbB/metabolismo , Factores de Transcripción de Tipo Kruppel/metabolismo , Factores de Transcripción de Tipo Kruppel/genética , Humanos , Músculo Liso Vascular/metabolismo , Miocitos del Músculo Liso/metabolismo , Líquido Extracelular/metabolismo , Fenotipo , Animales , Aterosclerosis/metabolismo , Sistema de Señalización de MAP Quinasas , Transducción de Señal
3.
Front Immunol ; 15: 1388769, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38726003

RESUMEN

Background: Newer 3D culturing approaches are a promising way to better mimic the in vivo tumor microenvironment and to study the interactions between the heterogeneous cell populations of glioblastoma multiforme. Like many other tumors, glioblastoma uses extracellular vesicles as an intercellular communication system to prepare surrounding tissue for invasive tumor growth. However, little is known about the effects of 3D culture on extracellular vesicles. The aim of this study was to comprehensively characterize extracellular vesicles in 3D organoid models and compare them to conventional 2D cell culture systems. Methods: Primary glioblastoma cells were cultured as 2D and 3D organoid models. Extracellular vesicles were obtained by precipitation and immunoaffinity, with the latter allowing targeted isolation of the CD9/CD63/CD81 vesicle subpopulation. Comprehensive vesicle characterization was performed and miRNA expression profiles were generated by smallRNA-sequencing. In silico analysis of differentially regulated miRNAs was performed to identify mRNA targets and corresponding signaling pathways. The tumor cell media and extracellular vesicle proteome were analyzed by high-resolution mass spectrometry. Results: We observed an increased concentration of extracellular vesicles in 3D organoid cultures. Differential gene expression analysis further revealed the regulation of twelve miRNAs in 3D tumor organoid cultures (with nine miRNAs down and three miRNAs upregulated). MiR-23a-3p, known to be involved in glioblastoma invasion, was significantly increased in 3D. MiR-7-5p, which counteracts glioblastoma malignancy, was significantly decreased. Moreover, we identified four miRNAs (miR-323a-3p, miR-382-5p, miR-370-3p, miR-134-5p) located within the DLK1-DIO3 domain, a cancer-associated genomic region, suggesting a possible importance of this region in glioblastoma progression. Overrepresentation analysis identified alterations of extracellular vesicle cargo in 3D organoids, including representation of several miRNA targets and proteins primarily implicated in the immune response. Conclusion: Our results show that 3D glioblastoma organoid models secrete extracellular vesicles with an altered cargo compared to corresponding conventional 2D cultures. Extracellular vesicles from 3D cultures were found to contain signaling molecules associated with the immune regulatory signaling pathways and as such could potentially change the surrounding microenvironment towards tumor progression and immunosuppressive conditions. These findings suggest the use of 3D glioblastoma models for further clinical biomarker studies as well as investigation of new therapeutic options.


Asunto(s)
Vesículas Extracelulares , Glioblastoma , MicroARNs , Organoides , Microambiente Tumoral , Humanos , Glioblastoma/inmunología , Glioblastoma/patología , Glioblastoma/metabolismo , Vesículas Extracelulares/metabolismo , Vesículas Extracelulares/inmunología , Organoides/inmunología , MicroARNs/genética , Microambiente Tumoral/inmunología , Transducción de Señal , Células Tumorales Cultivadas , Neoplasias Encefálicas/inmunología , Neoplasias Encefálicas/patología , Neoplasias Encefálicas/metabolismo , Regulación Neoplásica de la Expresión Génica , Línea Celular Tumoral , Técnicas de Cultivo Tridimensional de Células/métodos
4.
Front Immunol ; 15: 1388574, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38726015

RESUMEN

Background: Extracellular vesicles (EVs) are small, transparent vesicles that can be found in various biological fluids and are derived from the amplification of cell membranes. Recent studies have increasingly demonstrated that EVs play a crucial regulatory role in tumorigenesis and development, including the progression of metastatic tumors in distant organs. Brain metastases (BMs) are highly prevalent in patients with lung cancer, breast cancer, and melanoma, and patients often experience serious complications and are often associated with a poor prognosis. The immune microenvironment of brain metastases was different from that of the primary tumor. Nevertheless, the existing review on the role and therapeutic potential of EVs in immune microenvironment of BMs is relatively limited. Main body: This review provides a comprehensive analysis of the published research literature, summarizing the vital role of EVs in BMs. Studies have demonstrated that EVs participate in the regulation of the BMs immune microenvironment, exemplified by their ability to modify the permeability of the blood-brain barrier, change immune cell infiltration, and activate associated cells for promoting tumor cell survival and proliferation. Furthermore, EVs have the potential to serve as biomarkers for disease surveillance and prediction of BMs. Conclusion: Overall, EVs play a key role in the regulation of the immune microenvironment of brain metastasis and are expected to make advances in immunotherapy and disease diagnosis. Future studies will help reveal the specific mechanisms of EVs in brain metastases and use them as new therapeutic strategies.


Asunto(s)
Neoplasias Encefálicas , Vesículas Extracelulares , Microambiente Tumoral , Humanos , Vesículas Extracelulares/metabolismo , Vesículas Extracelulares/inmunología , Neoplasias Encefálicas/secundario , Neoplasias Encefálicas/inmunología , Microambiente Tumoral/inmunología , Animales , Biomarcadores de Tumor/metabolismo , Barrera Hematoencefálica/metabolismo
5.
Nat Commun ; 15(1): 3904, 2024 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-38724502

RESUMEN

Chronic wounds are a major complication in patients with diabetes. Here, we identify a therapeutic circRNA and load it into small extracellular vesicles (sEVs) to treat diabetic wounds in preclinical models. We show that circCDK13 can stimulate the proliferation and migration of human dermal fibroblasts and human epidermal keratinocytes by interacting with insulin-like growth factor 2 mRNA binding protein 3 in an N6-Methyladenosine-dependent manner to enhance CD44 and c-MYC expression. We engineered sEVs that overexpress circCDK13 and show that local subcutaneous injection into male db/db diabetic mouse wounds and wounds of streptozotocin-induced type I male diabetic rats could accelerate wound healing and skin appendage regeneration. Our study demonstrates that the delivery of circCDK13 in sEVs may present an option for diabetic wound treatment.


Asunto(s)
Proliferación Celular , Diabetes Mellitus Experimental , Vesículas Extracelulares , Fibroblastos , Queratinocitos , ARN Circular , Cicatrización de Heridas , Animales , Vesículas Extracelulares/metabolismo , Vesículas Extracelulares/trasplante , Cicatrización de Heridas/efectos de los fármacos , Humanos , Masculino , Ratones , Ratas , Fibroblastos/metabolismo , ARN Circular/genética , ARN Circular/metabolismo , Queratinocitos/metabolismo , Movimiento Celular , Piel/metabolismo , Receptores de Hialuranos/metabolismo , Receptores de Hialuranos/genética , Proteínas Proto-Oncogénicas c-myc/metabolismo , Proteínas Proto-Oncogénicas c-myc/genética , Ratones Endogámicos C57BL , Modelos Animales de Enfermedad , Ratas Sprague-Dawley , Proteínas de Unión al ARN/metabolismo , Proteínas de Unión al ARN/genética
6.
Int J Mol Sci ; 25(9)2024 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-38731868

RESUMEN

Among gynecological cancers, endometrial cancer is the most common in developed countries. Extracellular vesicles (EVs) are cell-derived membrane-surrounded vesicles that contain proteins involved in immune response and apoptosis. A deep proteomic approach can help to identify dysregulated extracellular matrix (ECM) proteins in EVs correlated to key pathways for tumor development. In this study, we used a proteomics approach correlating the two acquisitions-data-dependent acquisition (DDA) and data-independent acquisition (DIA)-on EVs from the conditioned medium of four cell lines identifying 428 ECM proteins. After protein quantification and statistical analysis, we found significant changes in the abundance (p < 0.05) of 67 proteins. Our bioinformatic analysis identified 26 pathways associated with the ECM. Western blotting analysis on 13 patients with type 1 and type 2 EC and 13 endometrial samples confirmed an altered abundance of MMP2. Our proteomics analysis identified the dysregulated ECM proteins involved in cancer growth. Our data can open the path to other studies for understanding the interaction among cancer cells and the rearrangement of the ECM.


Asunto(s)
Neoplasias Endometriales , Proteínas de la Matriz Extracelular , Matriz Extracelular , Vesículas Extracelulares , Proteómica , Humanos , Femenino , Neoplasias Endometriales/metabolismo , Neoplasias Endometriales/patología , Proteómica/métodos , Vesículas Extracelulares/metabolismo , Matriz Extracelular/metabolismo , Línea Celular Tumoral , Proteínas de la Matriz Extracelular/metabolismo , Persona de Mediana Edad , Biología Computacional/métodos , Metaloproteinasa 2 de la Matriz/metabolismo
7.
Int J Mol Sci ; 25(9)2024 Apr 27.
Artículo en Inglés | MEDLINE | ID: mdl-38732000

RESUMEN

Alterations in cellular signaling, chronic inflammation, and tissue remodeling contribute to hepatocellular carcinoma (HCC) development. The release of damage-associated molecular patterns (DAMPs) upon tissue injury and the ensuing sterile inflammation have also been attributed a role in HCC pathogenesis. Cargoes of extracellular vesicles (EVs) and/or EVs themselves have been listed among circulating DAMPs but only partially investigated in HCC. Mitochondria-derived vesicles (MDVs), a subpopulation of EVs, are another missing link in the comprehension of the molecular mechanisms underlying the onset and progression of HCC biology. EVs have been involved in HCC growth, dissemination, angiogenesis, and immunosurveillance escape. The contribution of MDVs to these processes is presently unclear. Pyroptosis triggers systemic inflammation through caspase-dependent apoptotic cell death and is implicated in tumor immunity. The analysis of this process, together with MDV characterization, may help capture the relationship among HCC development, mitochondrial quality control, and inflammation. The combination of immune checkpoint inhibitors (i.e., atezolizumab and bevacizumab) has been approved as a synergistic first-line systemic treatment for unresectable or advanced HCC. The lack of biomarkers that may allow prediction of treatment response and, therefore, patient selection, is a major unmet need. Herein, we overview the molecular mechanisms linking mitochondrial dysfunction, inflammation, and pyroptosis, and discuss how immunotherapy targets, at least partly, these routes.


Asunto(s)
Carcinoma Hepatocelular , Vesículas Extracelulares , Inflamación , Neoplasias Hepáticas , Mitocondrias , Piroptosis , Humanos , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patología , Vesículas Extracelulares/metabolismo , Inflamación/metabolismo , Inflamación/patología , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patología , Mitocondrias/metabolismo , Animales
8.
Biochem Biophys Res Commun ; 715: 149937, 2024 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-38701688

RESUMEN

Localization of RNAs at specific subcellular locations regulating various local cellular events has gained much attention recently. Like most other classes of RNAs, the function of newly discovered circular RNAs (circRNAs) is predominantly determined by their association with different cellular factors in the cell. CircRNAs function as transcriptional and posttranscriptional regulators of gene expression by interacting with transcription factors, splicing regulators, RNA-binding proteins, and microRNAs or by translating into functional polypeptides. Hence, studying their subcellular localization to assess their function is essential. The discovery of more than a million circRNA and increasing evidence of their involvement in development and diseases require a thorough analysis of their subcellular localization linking to their biological functions. Here, we summarize current knowledge of circRNA localization in cells and extracellular vesicles, factors regulating their subcellular localization, and the implications of circRNA localization on their cellular functions. Given the discovery of many circRNAs in all life forms and their implications in pathophysiology, we discuss the challenges in studying circRNA localization and the opportunities for unlocking the mystery of circRNA functions.


Asunto(s)
ARN Circular , ARN Circular/genética , ARN Circular/metabolismo , Humanos , Animales , ARN/metabolismo , ARN/genética , Vesículas Extracelulares/metabolismo , Vesículas Extracelulares/genética , Regulación de la Expresión Génica , Proteínas de Unión al ARN/metabolismo , Proteínas de Unión al ARN/genética , MicroARNs/genética , MicroARNs/metabolismo
9.
J Nanobiotechnology ; 22(1): 222, 2024 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-38698420

RESUMEN

BACKGROUND: Aging is a very complex physiological phenomenon, and sEVs are involved in the regulation of this mechanism. Serum samples from healthy individuals under 30 and over 60 years of age were collected to analyze differences in sEVs proteomics. RESULTS: Based on PBA analysis, we found that sEVs from the serum of elderly individuals highly express TACSTD2 and identified a subpopulation marked by TACSTD2. Using ELISA, we verified the upregulation of TACSTD2 in serum from elderly human and aged mouse. In addition, we discovered that TACSTD2 was significantly increased in samples from tumor patients and had better diagnostic value than CEA. Specifically, 9 of the 13 tumor groups exhibited elevated TACSTD2, particularly for cervical cancer, colon cancer, esophageal carcinoma, liver cancer and thyroid carcinoma. Moreover, we found that serum sEVs from the elderly (especially those with high TACSTD2 levels) promoted tumor cell (SW480, HuCCT1 and HeLa) proliferation and migration. CONCLUSION: TACSTD2 was upregulated in the serum of elderly individuals and patients with tumors, and could serve as a dual biomarker for aging and tumors.


Asunto(s)
Antígenos de Neoplasias , Biomarcadores de Tumor , Moléculas de Adhesión Celular , Neoplasias , Humanos , Antígenos de Neoplasias/metabolismo , Antígenos de Neoplasias/sangre , Antígenos de Neoplasias/genética , Moléculas de Adhesión Celular/metabolismo , Moléculas de Adhesión Celular/genética , Animales , Ratones , Femenino , Anciano , Persona de Mediana Edad , Neoplasias/sangre , Neoplasias/genética , Neoplasias/metabolismo , Masculino , Biomarcadores de Tumor/sangre , Biomarcadores de Tumor/genética , Línea Celular Tumoral , Adulto , Proliferación Celular , Movimiento Celular , Envejecimiento/genética , Proteómica/métodos , Células HeLa , Vesículas Extracelulares/metabolismo , Vesículas Extracelulares/genética , Regulación hacia Arriba
10.
FASEB J ; 38(10): e23639, 2024 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-38742798

RESUMEN

We tested the hypothesis that the biosensor capability of the endometrium is mediated in part, by the effect of different cargo contained in the extracellular vesicles secreted by the conceptus during the peri-implantation period of pregnancy. We transferred Bos taurus taurus embryos of different origin, in vivo (high developmental potential (IV)), in vitro (intermediate developmental potential (IVF)), or cloned (low developmental potential (NT)), into Bos taurus indicus recipients. Extracellular vesicles (EVs) recovered from Day 16 conceptus-conditioned medium were characterized and their microRNA (miRNA) cargo sequenced alongside RNA sequencing of their respective endometria. There were substantial differences in the endometrial response to in vivo versus in vitro and in vivo versus cloned conceptuses (1153 and 334DEGs respectively) with limited differences between in vitro Vs cloned conceptuses (36 DEGs). The miRNA cargo contained in conceptus-derived EVs was similar between all three groups (426 miRNA in common). Only 8 miRNAs were different between in vivo and cloned conceptuses, while only 6 miRNAs were different between in vivo and in vitro-derived conceptuses. Treatment of endometrial epithelial cells with mimic or inhibitors for miR-128 and miR-1298 changed the proteomic content of target cells (96 and 85, respectively) of which mRNAs are altered in the endometrium in vivo (PLXDC2, COPG1, HSPA12A, MCM5, TBL1XR1, and TTF). In conclusion, we have determined that the biosensor capability of the endometrium is mediated in part, by its response to different EVs miRNA cargo produced by the conceptus during the peri-implantation period of pregnancy.


Asunto(s)
Endometrio , Vesículas Extracelulares , MicroARNs , Femenino , Endometrio/metabolismo , Endometrio/citología , Animales , Vesículas Extracelulares/metabolismo , MicroARNs/metabolismo , MicroARNs/genética , Bovinos , Embarazo , Técnicas Biosensibles/métodos , Implantación del Embrión/fisiología , Embrión de Mamíferos/metabolismo
11.
Front Endocrinol (Lausanne) ; 15: 1365327, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38737555

RESUMEN

Endometriosis is a chronic inflammatory gynecological disease, which profoundly jeopardizes women's quality of life and places a significant medical burden on society. The pathogenesis of endometriosis remains unclear, posing major clinical challenges in diagnosis and treatment. There is an urgent demand for the development of innovative non-invasive diagnostic techniques and the identification of therapeutic targets. Extracellular vesicles, recognized for transporting a diverse array of signaling molecules, have garnered extensive attention as a novel mode of intercellular communication. A burgeoning body of research indicates that extracellular vesicles play a pivotal role in the pathogenesis of endometriosis, which may provide possibility and prospect for both diagnosis and treatment. In light of this context, this article focuses on the involvement of extracellular vesicles in the pathogenesis of endometriosis, which deliver information among endometrial stromal cells, macrophages, mesenchymal stem cells, and other cells, and explores their potential applications in the diagnosis and treatment, conducing to the emergence of new strategies for clinical diagnosis and treatment.


Asunto(s)
Endometriosis , Vesículas Extracelulares , Endometriosis/patología , Endometriosis/metabolismo , Endometriosis/terapia , Endometriosis/diagnóstico , Humanos , Vesículas Extracelulares/metabolismo , Femenino , Endometrio/patología , Endometrio/metabolismo , Animales , Células Madre Mesenquimatosas/metabolismo , Comunicación Celular/fisiología
12.
J Transl Med ; 22(1): 452, 2024 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-38741166

RESUMEN

Extracellular vesicles (EVs) are lipid bilayer structures released by all cells and widely distributed in all biological fluids. EVs are implicated in diverse physiopathological processes by orchestrating cell-cell communication. Colorectal cancer (CRC) is one of the most common cancers worldwide, with metastasis being the leading cause of mortality in CRC patients. EVs contribute significantly to the advancement and spread of CRC by transferring their cargo, which includes lipids, proteins, RNAs, and DNAs, to neighboring or distant cells. Besides, they can serve as non-invasive diagnostic and prognostic biomarkers for early detection of CRC or be harnessed as effective carriers for delivering therapeutic agents. Autophagy is an essential cellular process that serves to remove damaged proteins and organelles by lysosomal degradation to maintain cellular homeostasis. Autophagy and EV release are coordinately activated in tumor cells and share common factors and regulatory mechanisms. Although the significance of autophagy and EVs in cancer is well established, the exact mechanism of their interplay in tumor development is obscure. This review focuses on examining the specific functions of EVs in various aspects of CRC, including progression, metastasis, immune regulation, and therapy resistance. Further, we overview emerging discoveries relevant to autophagy and EVs crosstalk in CRC.


Asunto(s)
Autofagia , Neoplasias Colorrectales , Resistencia a Antineoplásicos , Vesículas Extracelulares , Metástasis de la Neoplasia , Humanos , Neoplasias Colorrectales/patología , Neoplasias Colorrectales/metabolismo , Neoplasias Colorrectales/inmunología , Vesículas Extracelulares/metabolismo , Animales , Terapia de Inmunosupresión
13.
J Extracell Vesicles ; 13(5): e12445, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38711334

RESUMEN

Small extracellular vesicles (sEV) derived from various cell sources have been demonstrated to enhance cardiac function in preclinical models of myocardial infarction (MI). The aim of this study was to compare different sources of sEV for cardiac repair and determine the most effective one, which nowadays remains limited. We comprehensively assessed the efficacy of sEV obtained from human primary bone marrow mesenchymal stromal cells (BM-MSC), human immortalized MSC (hTERT-MSC), human embryonic stem cells (ESC), ESC-derived cardiac progenitor cells (CPC), human ESC-derived cardiomyocytes (CM), and human primary ventricular cardiac fibroblasts (VCF), in in vitro models of cardiac repair. ESC-derived sEV (ESC-sEV) exhibited the best pro-angiogenic and anti-fibrotic effects in vitro. Then, we evaluated the functionality of the sEV with the most promising performances in vitro, in a murine model of MI-reperfusion injury (IRI) and analysed their RNA and protein compositions. In vivo, ESC-sEV provided the most favourable outcome after MI by reducing adverse cardiac remodelling through down-regulating fibrosis and increasing angiogenesis. Furthermore, transcriptomic, and proteomic characterizations of sEV derived from hTERT-MSC, ESC, and CPC revealed factors in ESC-sEV that potentially drove the observed functions. In conclusion, ESC-sEV holds great promise as a cell-free treatment for promoting cardiac repair following MI.


Asunto(s)
Vesículas Extracelulares , Células Madre Mesenquimatosas , Infarto del Miocardio , Miocitos Cardíacos , Vesículas Extracelulares/metabolismo , Vesículas Extracelulares/trasplante , Humanos , Animales , Ratones , Infarto del Miocardio/terapia , Infarto del Miocardio/metabolismo , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/citología , Células Madre Mesenquimatosas/metabolismo , Células Madre Mesenquimatosas/citología , Células Madre Embrionarias/metabolismo , Células Madre Embrionarias/citología , Células Madre Embrionarias Humanas/citología , Células Madre Embrionarias Humanas/metabolismo , Fibroblastos/metabolismo , Masculino , Daño por Reperfusión Miocárdica/terapia , Daño por Reperfusión Miocárdica/metabolismo , Modelos Animales de Enfermedad , Neovascularización Fisiológica , Células Cultivadas
14.
Commun Biol ; 7(1): 514, 2024 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-38710749

RESUMEN

Acute lung injury (ALI) is characterized by respiratory failure resulting from the disruption of the epithelial and endothelial barriers as well as immune system. In this study, we evaluated the therapeutic potential of airway epithelial cell-derived extracellular vesicles (EVs) in maintaining lung homeostasis. We isolated human bronchial epithelial cell-derived EVs (HBEC-EVs), which endogenously express various immune-related surface markers and investigated their immunomodulatory potential in ALI. In ALI cellular models, HBEC-EVs demonstrated immunosuppressive effects by reducing the secretion of proinflammatory cytokines in both THP-1 macrophages and HBECs. Mechanistically, these effects were partially ascribed to nine of the top 10 miRNAs enriched in HBEC-EVs, governing toll-like receptor-NF-κB signaling pathways. Proteomic analysis revealed the presence of proteins in HBEC-EVs involved in WNT and NF-κB signaling pathways, pivotal in inflammation regulation. ANXA1, a constituent of HBEC-EVs, interacts with formyl peptide receptor (FPR)2, eliciting anti-inflammatory responses by suppressing NF-κB signaling in inflamed epithelium, including type II alveolar epithelial cells. In a mouse model of ALI, intratracheal administration of HBEC-EVs reduced lung injury, inflammatory cell infiltration, and cytokine levels. Collectively, these findings suggest the therapeutic potential of HBEC-EVs, through their miRNAs and ANXA1 cargo, in mitigating lung injury and inflammation in ALI patients.


Asunto(s)
Lesión Pulmonar Aguda , Anexina A1 , Células Epiteliales , Vesículas Extracelulares , Receptores de Formil Péptido , Receptores de Lipoxina , Transducción de Señal , Lesión Pulmonar Aguda/metabolismo , Lesión Pulmonar Aguda/patología , Humanos , Vesículas Extracelulares/metabolismo , Vesículas Extracelulares/trasplante , Anexina A1/metabolismo , Anexina A1/genética , Animales , Ratones , Receptores de Formil Péptido/metabolismo , Receptores de Formil Péptido/genética , Células Epiteliales/metabolismo , Bronquios/metabolismo , Bronquios/citología , Masculino , Ratones Endogámicos C57BL , MicroARNs/metabolismo , MicroARNs/genética , FN-kappa B/metabolismo , Citocinas/metabolismo , Células THP-1
15.
Cell Biochem Funct ; 42(4): e4035, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38715180

RESUMEN

Chronic lymphocytic leukemia (CLL) is a chronic lymphoproliferative disorder characterized by monoclonal B cell proliferation. Studies carried out in recent years suggest that extracellular vesicles (EVs) may be a potential biomarker in cancer. Tyro3-Axl-Mertk (TAM) Receptor Tyrosine Kinases (RTKs) and Phosphatidylserine (PS) have crucial roles in macrophage-mediated immune response under normal conditions. In the tumor microenvironment, these molecules contribute to immunosuppressive signals and prevent the formation of local and systemic antitumor immune responses. Based on this, we aimed to evaluate the amount of PS and TAM RTK in plasma and on the surface of EVs in CLL patients and healthy volunteers in this study. In this study, 25 CLL (11 F/14 M) patients in the Rai (O-I) stage, newly diagnosed or followed up without treatment, and 15 healthy volunteers (11 F/4 M) as a control group were included. For all samples, PS and TAM RTK levels were examined first in the plasma and then in the EVs obtained from the plasma. We detected a significant decrease in plasma PS, and TAM RTK levels in CLL patients compared to the control. Besides, we determined a significant increase in TAM RTK levels on the EV surface in CLL, except for PS. In conclusion, these receptor levels measured by ELISA in plasma may not be effective for the preliminary detection of CLL. However, especially TAM RTKs on the surface of EVs may be good biomarkers and potential targets for CLL therapies.


Asunto(s)
Vesículas Extracelulares , Leucemia Linfocítica Crónica de Células B , Fosfatidilserinas , Proteínas Tirosina Quinasas Receptoras , Humanos , Leucemia Linfocítica Crónica de Células B/sangre , Leucemia Linfocítica Crónica de Células B/diagnóstico , Leucemia Linfocítica Crónica de Células B/metabolismo , Vesículas Extracelulares/metabolismo , Vesículas Extracelulares/química , Femenino , Fosfatidilserinas/metabolismo , Fosfatidilserinas/sangre , Proteínas Tirosina Quinasas Receptoras/metabolismo , Proteínas Tirosina Quinasas Receptoras/sangre , Masculino , Persona de Mediana Edad , Anciano , Tirosina Quinasa del Receptor Axl , Proteínas Proto-Oncogénicas/sangre , Proteínas Proto-Oncogénicas/metabolismo , Adulto , Tirosina Quinasa c-Mer/metabolismo , Anciano de 80 o más Años
16.
J Nanobiotechnology ; 22(1): 215, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38693585

RESUMEN

Stem cells (SCs) have been used therapeutically for decades, yet their applications are limited by factors such as the risk of immune rejection and potential tumorigenicity. Extracellular vesicles (EVs), a key paracrine component of stem cell potency, overcome the drawbacks of stem cell applications as a cell-free therapeutic agent and play an important role in treating various diseases. However, EVs derived from two-dimensional (2D) planar culture of SCs have low yield and face challenges in large-scale production, which hinders the clinical translation of EVs. Three-dimensional (3D) culture, given its ability to more realistically simulate the in vivo environment, can not only expand SCs in large quantities, but also improve the yield and activity of EVs, changing the content of EVs and improving their therapeutic effects. In this review, we briefly describe the advantages of EVs and EV-related clinical applications, provide an overview of 3D cell culture, and finally focus on specific applications and future perspectives of EVs derived from 3D culture of different SCs.


Asunto(s)
Técnicas de Cultivo Tridimensional de Células , Vesículas Extracelulares , Células Madre , Vesículas Extracelulares/metabolismo , Humanos , Células Madre/citología , Células Madre/metabolismo , Animales , Técnicas de Cultivo Tridimensional de Células/métodos , Técnicas de Cultivo de Célula/métodos
17.
Arch Microbiol ; 206(6): 244, 2024 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-38702412

RESUMEN

Aggregatibacter actinomycetemcomitans is an opportunistic Gram-negative periodontopathogen strongly associated with periodontitis and infective endocarditis. Recent evidence suggests that periodontopathogens can influence the initiation and progression of oral squamous cell carcinoma (OSCC). Herein we aimed to investigate the effect of A. actinomycetemcomitans-derived extracellular vesicles (EVs) on OSCC cell behavior compared with EVs from periodontopathogens known to associate with carcinogenesis. EVs were isolated from: A. actinomycetemcomitans and its mutant strains lacking the cytolethal distending toxin (CDT) or lipopolysaccharide (LPS) O-antigen; Porphyromonas gingivalis; Fusobacterium nucleatum; and Parvimonas micra. The effect of EVs on primary and metastatic OSCC cells was assessed using cell proliferation, apoptosis, migration, invasion, and tubulogenesis assays. A. actinomycetemcomitans-derived EVs reduced the metastatic cancer cell proliferation, invasion, tubulogenesis, and increased apoptosis, mostly in CDT- and LPS O-antigen-dependent manner. EVs from F. nucleatum impaired the metastatic cancer cell proliferation and induced the apoptosis rates in all OSCC cell lines. EVs enhanced cancer cell migration regardless of bacterial species. In sum, this is the first study demonstrating the influence of A. actinomycetemcomitans-derived EVs on oral cancer in comparison with other periodontopathogens. Our findings revealed a potential antitumorigenic effect of these EVs on metastatic OSCC cells, which warrants further in vivo investigations.


Asunto(s)
Aggregatibacter actinomycetemcomitans , Apoptosis , Proliferación Celular , Vesículas Extracelulares , Neoplasias de la Boca , Aggregatibacter actinomycetemcomitans/genética , Vesículas Extracelulares/metabolismo , Neoplasias de la Boca/microbiología , Neoplasias de la Boca/patología , Humanos , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Movimiento Celular , Fusobacterium nucleatum/fisiología , Carcinoma de Células Escamosas/microbiología , Carcinoma de Células Escamosas/patología , Porphyromonas gingivalis/genética
18.
Front Immunol ; 15: 1346587, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38690261

RESUMEN

Extracellular vesicles (EVs) are important cell-to-cell communication mediators. This paper focuses on the regulatory role of tumor-derived EVs on macrophages. It aims to investigate the causes of tumor progression and therapeutic directions. Tumor-derived EVs can cause macrophages to shift to M1 or M2 phenotypes. This indicates they can alter the M1/M2 cell ratio and have pro-tumor and anti-inflammatory effects. This paper discusses several key points: first, the factors that stimulate macrophage polarization and the cytokines released as a result; second, an overview of EVs and the methods used to isolate them; third, how EVs from various cancer cell sources, such as hepatocellular carcinoma, colorectal carcinoma, lung carcinoma, breast carcinoma, and glioblastoma cell sources carcinoma, promote tumor development by inducing M2 polarization in macrophages; and fourth, how EVs from breast carcinoma, pancreatic carcinoma, lungs carcinoma, and glioblastoma cell sources carcinoma also contribute to tumor development by promoting M2 polarization in macrophages. Modified or sourced EVs from breast, pancreatic, and colorectal cancer can repolarize M2 to M1 macrophages. This exhibits anti-tumor activities and offers novel approaches for tumor treatment. Therefore, we discovered that macrophage polarization to either M1 or M2 phenotypes can regulate tumor development. This is based on the description of altering macrophage phenotypes by vesicle contents.


Asunto(s)
Vesículas Extracelulares , Activación de Macrófagos , Macrófagos , Neoplasias , Humanos , Vesículas Extracelulares/inmunología , Vesículas Extracelulares/metabolismo , Macrófagos/inmunología , Macrófagos/metabolismo , Neoplasias/inmunología , Neoplasias/terapia , Neoplasias/patología , Neoplasias/metabolismo , Animales , Activación de Macrófagos/inmunología , Microambiente Tumoral/inmunología , Comunicación Celular/inmunología , Citocinas/metabolismo
19.
J Med Invest ; 71(1.2): 102-112, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38735705

RESUMEN

Vibrio vulnificus (V. vulnificus) is a halophilic gram-negative bacterium that inhabits coastal warm water and induce severe diseases such as primary septicemia. To investigate the mechanisms of rapid bacterial translocation on intestinal infection, we focused on outer membrane vesicles (OMVs), which are extracellular vesicles produced by Gram-negative bacteria and deliver virulence factors. However, there are very few studies on the pathogenicity or contents of V. vulnificus OMVs (Vv-OMVs). In this study, we investigated the effects of Vv-OMVs on host cells. Epithelial cells INT407 were stimulated with purified OMVs and morphological alterations and levels of lactate dehydrogenase (LDH) release were observed. In cells treated with OMVs, cell detachment without LDH release was observed, which exhibited different characteristics from cytotoxic cell detachment observed in V. vulnificus infection. Interestingly, OMVs from a Vibrio Vulnificus Hemolysin (VVH) and Multifunctional-autoprocessing repeats-in -toxin (MARTX) double-deletion mutant strain also caused cell detachment without LDH release. Our results suggested that the proteolytic function of a serine protease contained in Vv-OMVs may contribute to pathogenicity of V. vulnificus by assisting bacterial translocation. This study reveals a new pathogenic mechanism during V. vulnificus infections. J. Med. Invest. 71 : 102-112, February, 2024.


Asunto(s)
Vesículas Extracelulares , Vibrio vulnificus , Vibrio vulnificus/patogenicidad , Vibrio vulnificus/metabolismo , Humanos , Vesículas Extracelulares/metabolismo , Proteínas Hemolisinas/metabolismo , L-Lactato Deshidrogenasa/metabolismo , Membrana Externa Bacteriana/metabolismo , Células Epiteliales/microbiología
20.
J Transl Med ; 22(1): 446, 2024 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-38741170

RESUMEN

Autism spectrum disorder (ASD) is a multifaceted neurodevelopmental disorder predominant in childhood. Despite existing treatments, the benefits are still limited. This study explored the effectiveness of mesenchymal stem cell-derived extracellular vesicles (MSC-EVs) loaded with miR-137 in enhancing autism-like behaviors and mitigating neuroinflammation. Utilizing BTBR mice as an autism model, the study demonstrated that intranasal administration of MSC-miR137-EVs ameliorates autism-like behaviors and inhibits pro-inflammatory factors via the TLR4/NF-κB pathway. In vitro evaluation of LPS-activated BV2 cells revealed that MSC-miR137-EVs target the TLR4/NF-κB pathway through miR-137 inhibits proinflammatory M1 microglia. Moreover, bioinformatics analysis identified that MSC-EVs are rich in miR-146a-5p, which targets the TRAF6/NF-κB signaling pathway. In summary, the findings suggest that the integration of MSC-EVs with miR-137 may be a promising therapeutic strategy for ASD, which is worthy of clinical adoption.


Asunto(s)
Conducta Animal , Vesículas Extracelulares , Células Madre Mesenquimatosas , MicroARNs , FN-kappa B , Transducción de Señal , MicroARNs/metabolismo , MicroARNs/genética , Animales , Vesículas Extracelulares/metabolismo , FN-kappa B/metabolismo , Células Madre Mesenquimatosas/metabolismo , Trastorno Autístico/genética , Trastorno Autístico/metabolismo , Microglía/metabolismo , Masculino , Ratones , Receptor Toll-Like 4/metabolismo , Inflamación/patología , Ratones Endogámicos C57BL , Lipopolisacáridos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA